Advances in Flood Forecasting and the Implications for Risk Management International Workshop Alkmaar, The Netherlands 25-26 May 2010

THE COST731 ACTION- PROPAGATION OF UNCERTAINTY FROM METEOROLOGY INTO HYDROLOGICAL MODELS

Massimiliano Zappa, Andrea Rossa, Katharina Liechti, Michael Bruen, Urs Germann, Günther Haase, Christian Keil, Peter Krahe

& all the COST 731 contributors

Contacts: Massimiliano Zappa massimiliano.zappa@wsl.ch

EU-Initiative for networking national efforts

Belgium, Cyprus, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, Netherlands, Norway, Poland, Portugal, Romania, Spain, Sweden, Switzerland, United Kingdom

Australia

MAP D-PHASE and COST 731 - Common proof of concepts -> Presentation of Walser et al.

Rotach, M.W. et al., 2009. MAP D-PHASE: Real-time Demonstration of Weather Forecast Quality in the Alpine Region. *Bulletin of the American Meteorological Society*, doi: 10.1175/2009BAMS2776.1

COST 731: outstanding questions

- how to further enhance interaction between hydrology and NWP
- aspects of radarQPE assimilation techniques (COST 717)
- characterization of quality/uncertainty of unconventional observations
- propagation of observation uncertainty in hydrological and NWP models
- How to communicate and use uncertainty measures in decision making

END-TO-END Flood forecasting chain

COST 731 WG Structure: community interaction

- WG-1: Propagation of uncertainty from observing systems (radars) into NWP
- WG-2: Propagation of uncertainty from observing systems and NWP into hydrological models
- WG-3: Use of uncertainty in warnings and decision making

WORKING-GROUP 1

Propagation of uncertainty from observing systems (radars) into NWP

Radar rainfall assimilation exps: storm total precip

Radar QPE accumulation

With radar data assimilation

Leuenberger et al., MeteoSwiss

COSMO-2 + LHN ensemble (COSMO-LEPS)

Experiments without LHN

QPF on 12 July 2006

Experiments with LHN

Keil et al., DLR

WORKING-GROUP 2

Propagation of uncertainty from observing systems and NWP into hydrological models

COST 731: Some contributions from the WG2 members

Sweden: radar QPE

Finland: medium to long range

France: medium range

(Seasonal) Medium + extended range: winter 2008-2009 lake Saimaa 60 day inflow

Monday April 21st 2008, Day -1 -> Do NWP Models agree?

precipitation [mm/h] S 800 WL3 က discharge [m3/s] 600 runoff measured runoff observed meteo runoff COSMO-LEPS runoff COSMO-7 400 WL2 runoff COSMO-2 runoff MM5 WL1 200 0 16–Apr 20–Apr 21–Apr 17–Apr 22-Apr 18-Apr 19-Apr 23-Apr 25-Apr 24–Apr hours

Thur at Andelfingen

Updated **DAILY** since April 2007

Plot: Simon Jaun, WSL/IACETH

Tuesday April 22nd 2008, Day 0 -> YES, they do! Too Late?

Thur at Andelfingen

Updated **DAILY** since April 2007

Plot: Simon Jaun, WSL/IACETH

Verification of two HEPS chains June 2007 to November 2008

See Poster of Diezig et al.

Low flows periods strongly influences the statistics

Plot: Diezig, Vogt, Jaun and Fundel, 2010

WORKING-GROUP 2

Propagation of uncertainty from observing systems and NWP into hydrological models

REAL: ensemble generator using LU

Germann et al., QJRMS, 2009

Updated HOURLY since April 2007

Radar Ensemble for Hydrology

QPE vs BLENDED QPE (external drift Kriging) >> MC-Sampling of errors-PDF

Xavi Llort, Daniel Sempere (CRAHI, Barcelona), Kai Schroeter (TU Darmstadt)

Radar Ensemble for Hydrology

Quality Index (QI) maps >> MC-Sampling of QI-statistics-PDF

Jan Szturc, Thomas Einfalt

Accounting different sources of uncertainty

Accounting different sources of uncertainty

Output uncertainty

WORKING-GROUP 3

Use of uncertainty in warnings and decision making

"The spaghetti plot surveys in 2008" The task

Ticino at Bellinzona, init: 12.07.2008

How big will be the peak discharge from this forecast? At which time will the peak discharge occur?

"The spaghetti plot surveys in 2008" The answers

The observed value? 785 m³s⁻¹ at 11:00

Bayerisches Landesamt für Umwelt

PREVERV

Example discharge ensemble ("Spaghettiplot") by use of COSMO-LEPS from 28.02.2008

\rightarrow Visualisation of the single ensemble member

Pegel Marienthal / Regen (Vorhersage vom 27.02.08 05:00 Uhr)											
Ensemblemember	27.02.	28.02.	29.02.	01.03.	02.03.						
1											
2											
3											
4											
5											
6											
7											
8											
9											
10											
11											
12											
13											
14											
15											
16											
Abfluss ≥ Meldestufe1	0	0	0	1	13						
Abfluss ≥ Meldestufe2	0	0	0	1	8						
Abfluss ≥ Meldestufe3	0	0	0	0	1						
Abfluss ≥ Meldestufe4	0	0	0	0	0						

Bayerisches Landesamt für

Umwelt

Numer of ensemble member which exceed in a defined time period the warning levels

\rightarrow Visualization of probabilities in graphical form

Bayerisches Landesamt für

Umwelt

\rightarrow Comparison of follow up forecasts (persistency)

Kötzting	Maximal erreichte Meldestufen							Häufigste erreichte Meldestufen										
Vorhersagezeitpunkt	25.02.	26.02.	27.02.	28.02.	29.02.	01.03.	02.03.	03.03.	04.03.	25.02.	26.02.	27.02.	28.02.	29.02.	01.03.	02.03.	03.03.	04.03.
Vorhersagelauf																		
25.02.2008																		
26.02.2008																		
27.02.2008					6%	6%	13%							94%	69%	50%		
28.02.2008						6%	6%	6%							50%	50%		
29.02.2008						6%	6%								38%	75%		

keine Meldestufe

Meldestufe 1 Meldestufe 2

Percentage of ensemble member that reach or exceed the warning level

Bayerisches Landesamt für

Umwelt

\rightarrow Visualisation of Percentile (Exceedance probabilities)

Probability that the discharge or water level at a gauging level will be reached or exceeded

Bayerisches Landesamt für

Umwelt

Atmospheric Science Letters

Copyright @ 2010 Royal Meteorological Society

Joint HEPEX/COST731 workshop on downscaling NWP products and propagation of uncertainty in hydrological modelling Toulouse, 2009

Rossa A, Haase G, Keil C, Pfeifer, M., Bech, J., Ballard, S. 2010a. Propagation of uncertainty from observing systems into NWP: COST-731 Working Group 1. *Atmospheric Science Letters*. doi:10.1002/asl.nnn

Zappa M, Beven KJ, Bruen M, Cofino A, Kok K, Martin E, Nurmi P, Orfila B, Roulin E, Schröter K,Seed A, Stzurc J, Vehviläinen B, Germann U, Rossa A. 2010. Propagation of uncertainty from observing systems and NWP into hydrological models: COST-731 Working Group 2. Atmospheric Science Letters. doi:10.1002/asl.248

Bruen M, Krahe P, Zappa M, Olsson J, Vehvilainen B, Kok K, Daamen K. Visualising flood forecasting uncertainty: some current European EPS platforms – COST731 Working Group 3. 2010. Atmospheric Science Letters . doi:10.1002/asl.258

FINAL COST731 Seminar @ ERAD 2010 (Rumania)

- Uncertainty is a topic of very considerable interest
- subject of ongoing (statistical) research
 Observation
 COST 731 a step towards operations (hydrology)
 D-PHASE (Wals
- concept/feasibili
- Radar QPE: cor
- High-res NWP:
- Decision support collect experience
- OSS attitue Hydrological ng established modelling

ent teams

Advances in Flood Forecasting and the Implications for Risk Management International Workshop Alkmaar, The Netherlands 25-26 May 2010

THE COST731 ACTION- PROPAGATION OF UNCERTAINTY FROM METEOROLOGY INTO HYDROLOGICAL MODELS

Massimiliano Zappa, Andrea Rossa, Katharina Liechti, Michael Bruen, Urs Germann, Günther Haase, Christian Keil, Peter Krahe

& all the COST 731 contributors

Contacts: Massimiliano Zappa massimiliano.zappa@wsl.ch

