
Real Time Flood Forecasting 
and Warning Systems

Aims of Course

© Newcastle University 2010

Prof. Ezio Todini
President Italian Hydrological Society

University of Bologna - Italy

QUANTIFICATION OF UNCERTAINTY 
USING BAYESIAN APPROACHES
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This presentation aims at clarifying the 
concept of

Predictive Uncertainty (PU) 

and at providing a methodological 
framework for quantifying and using it 

in flood forecasting and water resources 
management.

SCOPE
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1. Flood Warning and Evacuation 
Management

2. Flood Detention and Diversion

3.  Real Time Reservoir Management

Etc.

Problems Involved
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H DECISION MAKING 
UNDER UNCERTAINTY

The Reservoir Management Problem

Deterministic Forecast

Losses = 0

Damages

Volume

E{g(x)} ≠ g(E{x}) 

PU as pdf

Expected Losses ≠ 0

Probabilistic Forecast
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UNDER UNCERTAINTY

The Linear Losses Case

Damages

Volume

Probabilistic Forecast

Rel = µ(V) – Vmax

+ σ(V) f(c)

Deterministic Forecast  µ(V) 
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In order to understand the meaning of Predictive
Uncertainty, let me pose the following question:

Flooding damages will occur: 

(1) when the forecasted level overtops the dykes?  

or

(2) when the actual future water level overtops 
the dykes?

The obvious answer is
(2)  when the actual future water level overtops 

the dykes 

THE DEFINITION OF
PREDICTIVE UNCERTAINTY
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PU is obviously the uncertainty that we 
have on the occurrence of a real future 
value, as for instance the water level in 

12 hours from now. 

This must not be confused with

“Validation Uncertainty”.

This answer has a strong implication in the 
definition of PU

THE DEFINITION OF
PREDICTIVE UNCERTAINTY
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Following Rougier (2007), 

Predictive uncertainty

is the expression of a subjective assessment 
of the probability of occurrence a future (real) 
event conditional upon all the knowledge 
available up to the present (the prior 
knowledge) and the information 
that can be acquired through 

a learning inferential process.

THE DEFINITION OF
PREDICTIVE UNCERTAINTY
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Meteorological Ensembles 
are a measure of the Validation Uncertainty,  

while 
Climatological distributions

or 
Extreme Value distributions

are measures of Predictive Uncertainty, 
although non conditional on real time 

information. 

VALIDATION UNCERTAINTY vs
PREDICTIVE UNCERTAINTY
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Meteorological Ensembles 
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The Validation Uncertainty is the probability
that the model     predicted value    (water
level,discharge, water volume, etc) will be 

smaller or equal to a prescribed value

given our prior knowledge, all the historical 
information and the    observed value

( )*ˆ , ,
t k t t k t hist

Prob y y y M
∆ ∆+ +

≤ D

( )*ˆ , ,
t t hist

Prob y y y M≤ D

Please note that this expression cannot be used 
beyond time t because observations are not 

available 

The definition of 
Validation Uncertainty
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Assessment of Validation Uncertainty (VU) is 
essential to evaluate the performances of 
a model in order to improve it. 

Therefore, when dealing with VU, one must 
also assess and separate the effects of 
model uncertainty, parameter uncertainty, 
input and output measurement uncertainty,
initial and boundary conditions uncertainty.

The use of Validation Uncertainty
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The Predictive Uncertainty is the probability
that a future value of the predictand (water
level,discharge, water volume, etc) will be 

smaller or equal to a prescribed value.

given our prior knowledge, all the historical 
information and the   model forecast

The definition of 
Predictive Uncertainty
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Assessment of  Predictive Uncertainty is 
fundamental to take a decision given a model
(or several models) forecast.

When using PU it is not necessary to assess 
and separate all the sources of errors if the 
conditional density used is consistent with 
the model(s) and all the other sources of 
uncertainty, which affected its development.

The use of Predictive Uncertainty
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UNCERTAINTY
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The basic idea is to plot the predictand versus the prediction
In practice one has to look at the SCATTERPLOT

For a given model and a set of parameters one can derive 
predictand and model joint/conditional probability densities
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For a given model
there are as many joint and 
conditional distributions  as 
the number of parameter sets

PARAMETER UNCERTAINTY

BUT
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Therefore one must derive the “Posterior 
Density (PD)” of parameters                 using the
classical Bayesian Inference. This PD is then
used to marginalise, namely to integrate out,
the effect of parameters.

In a continuous domain:

or in discrete mode:
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MODEL AND PARAMETER
UNCERTAINTY
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Please note that this is TOTALLY different 
from what is proposed in Generalized Likelihood 

Uncertainty Estimation (GLUE), where the 
definition of PU is given as:

where                                 is nothing else
than the posterior parameter density.

Where are the conditional predictive density (???) 
as well as the 

marginalisation of parameter uncertainty (???)
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MODEL AND PARAMETER
UNCERTAINTY
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DEFINITION

USING GLUE
POSTERIOR
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UNCERTAINTY

GLUE

CORRECTNonetheless, marginalising  parameter 
uncertainty, although statistically correct, 
does not produce substantial differences 
from using a best fit parameter set.
This is mostly due to the fact that the nearly 
best parameters produce predictions that are
closely related among them, while the 
posterior probability of the worst parameter
sets is obviously very low.
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Marginalised

Max  Likelihood

The difference between the marginalised density  
and the one obtained using the  “best parameter 

set” can be relatively small

Predictive uncertainty in hindcast mode 
(Results on a Chinese catchment)
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H Predictive uncertainty in hindcast mode 
(Results on a Chinese catchment)

Solid: Marginalised

Dashed: Max Likelihood
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When the behaviour of a set of conditions
such as errors deriving from the different 
sources varies at random in time in an 
“unpredictable manner” then one can use 
the “mixture of models” concept.

Please bear in mind that if the conditions 
ARE predictable then one is better off by
using the “model” which best fits the 
observations under the relevant conditions.
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H MODEL AND PARAMETER
UNCERTAINTY

EV

time

M1

M2

1

0

Predictable BehaviourUnpredictable Behaviour
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GLUE

CORRECTThis is why it is more interesting to approach
the problem in terms of  

few alternative models
of a widely different nature. 

i.e. a physically based model, a conceptual 
model and a data driven model.
This has given rise to the development of 
several multi-model

Predictive Uncertainty Processors.
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For different models
there are as many joint and 
conditional distributions  as 

the number of models

MODEL UNCERTAINTY
M1

M2

Mn
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UNCERTAINTY PROCESSORS
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THE BINARY RESPONSE PROCESSORS

The Binary Response Processors convert continuous 
measurements and/or forecasts into discrete 0-1 
probability of occurrence of one event.

- The Logit (based on the Logistic Distribution)
- The Probit (based on the Inverse Gaussian Distribution)
- The Bayesian Multivariate Binary Processor (BMBP)
- The Mixture of Beta Distributions

Useful tools, but the reliability of the continuous 
processors seems to be higher. 
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Predictive Uncertainty Processors 

Hydrological Uncertainty Processor 
Krzysztofowicz, 1999; Krzysztofowicz and Kelly, 2000

Bayesian Model Averaging 
Raftery et al., 2003;

Model Conditional Processor 
Todini, 2008.

………………………
Krzysztofowicz, R., 1999. Bayesian theory of probabilistic forecasting via deterministic hydrologic model.

Water Resour. Res., 35, 2739–2750.

Raftery, A. E., F. Balabdaoui, T. Gneiting, and M. Polakowski, 2003. Using Bayesian model averaging to 

calibrate forecast ensembles, Tech. Rep. 440, Dep. of Stat., Univ. of Wash., Seattle.

Todini, E., 2008. A model conditional processor to assess predictive uncertainty in flood forecasting. Intl.
J. River Basin Management. Vol. 6 (2), 123-137. 
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Krzysztofowicz Bayesian Processor

Krzysztofowicz (1999) approach (HUP) was the first to be 
developed in hydrological applications.
It combines prior information embedded into an AR1 
model with that deriving from a predictive model of 
unspecified nature (physically based, conceptual, etc.)
Unfortunately

-It has a scalar formulation: only one model can be 
combined at a time

-The  AR1 model is implicitly assumed to be independent 
from the predictive model

AVAILABLE PREDICTIVE 
UNCERTAINTY PROCESSORS
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BMA aims at assessing the unconditional mean and variance
of any future value of a predictand on the basis of several 
model forecasts.
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It  reformulates the Bayesian mixture equation

by considering the

posterior probability as a weight

AVAILABLE PREDICTIVE 
UNCERTAINTY PROCESSORS

Raftery Bayesian Model Averaging
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The BMA weights are estimated by constrained 
maximisation of the Likelihood of observing the 
predictand 

on the assumption that the probability densities of the 
observations as well as of the model forecasts are all
approximately Gaussian, which is correct if using the 
Normal Quantile Transform (NQT) to transform the data
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AVAILABLE PREDICTIVE 
UNCERTAINTY PROCESSORS
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The Model Conditional Processor

If one makes the hypothesis that all the NQT transformed
variables follow a multi-Gaussian joint probability density,
a more natural approach can be:

- To develop a set of models in the real untransformed 
space (one or more than one)

- To build the joint probability density in the Gaussian space
(Predictand, a priori model, deterministic model, etc.)

- To simply compute the probability of the predictand 
conditional on ALL the model predictions

AVAILABLE PREDICTIVE 
UNCERTAINTY PROCESSORS
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Given  a vector              of Normally distributed random variables, with 

Mean and Variance

also Normally distributed

Then the conditional distribution is also a Normal distribution

with conditional Mean 

and conditional Variance
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A Useful Property of the 
Multivariate Normal Distribution

With marginal distributions                                 and
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- It allows one to combine together  a wide variety of 
different models without the need of using the 
constrained optimisation required by BMA

- It accounts for correlation among the predictive models

- It allows one to have multiple outputs, benefitting from 
spatial correlation (for instance several water levels along
the same river)

Advantages of MCP

AVAILABLE PREDICTIVE 
UNCERTAINTY PROCESSORS

In many cases the statistical pattern and the correlation between observed 

and modelled quantities differs from lower to higher values. In this case the 

estimated predictive uncertainty is affected by the non stationarity of the 

errors . 

MODEL CONDITIONAL PROCESSOR
THE NEED FOR USING THE TRUNCATED NORMAL DISTRIBUTION

Correlation may be quite different if one considers high 

or low water stages. Particularly when using flood 

routing models, lower water level forecasts are highly 

influenced by the lack of proper knowledge of the river 

geometrical description 
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In order to overcome this problem MCP can also be defined in terms of the 

Bivariate Truncated Normal Disitribution.

Higher  and lower values are then treated 

using two different  Binary Truncated Normal 

Distributions. 

MODEL CONDITIONAL PROCESSOR
THE BIVARIATE JOINT TRUNCATED NORMAL DISTRIBUTION

S

SI

I

H

S

SI

I

H

COMPARISON OF DIFFERENT APPROACHES

  

Pontelagoscuro

The river Po in Italy

Basin size  =  70,000 km2

Results obtained in collaboration with ARPA-SIM of Emilia-Romagna
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Hydraulic model + AR1

Bias Variance
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H EXAMPLES

Hydraulic model + AR1 + NN

Variance
% observations

within limits
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MISSED ALARMS CORRECTED BY THE MCP

Threshold (h*)

Observed Level

MCP Expected Value

Hydraulic Model 
Forecast

P(h>h*) Observed

P(h>h*) MCP Forecast

MCP Binary Response

Po at Pontelagoscuro:  36 h forecast                
Mike11  and  MCP processed PU
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Po at Pontelagoscuro:  36 h forecast                
Mike11  and  MCP processed PU

Threshold 
(h*)Observed Level

MCP Expected Value

Hydraulic Model 
Forecast

P(h>h*) Observed
P(h>h*) MCP Forecast
MCP Binary Response

FALSE ALARM CORRECTED BY THE MCP
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Po at Pontelagoscuro:  36 h forecast                
Mike11 + ANN  and  MCP processed PU

STATISTICAL INDEXES FOR THE VALIDATION PERIOD (01/01/2004 – 30/01/2009)

EVENT STATISTICS

NEGATIVE 
HITS

FALSE 
ALARMS

MISSED 
ALARMS

POSITIVE 
HITS

MODEL 42 2 1 3

HM + MCP 43 1 0 4

HM + ANN + MCP 44 0 0 4

CONTINUOUS FORECAST STATISTICS
ERROR MEAN ERROR VARIANCE

MODEL 0.1803 7.23E-02

HM + MCP 0.0157 5.09E-02
HM + ANN + MCP -6.56E-03 3.98E-02
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RESULTS
BORETTO (PO) – Forecasting horizon = 36 h
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RESULTS
BORETTO (PO)

MODELLO MCP MODELLO MCP MODELLO MCP 

0 0 0 2 0 16 18

6 1 0 3 0 15 18

12 1 0 3 0 15 18

18 5 3 3 0 15 18

24 0 0 2 0 16 18

30 0 2 2 1 16 17

36 0 2 2 1 16 17

ORE 

CALIBRAZIONE

FALSI ALLARMI MANCATI ALLARMI CORRETTI POSITIVI

MODELLO MCP MODELLO MCP MODELLO MCP 

0 0 0 0 0 3 3

6 0 0 0 0 3 3

12 0 0 0 0 3 3

18 1 1 0 0 3 3

24 0 0 0 0 3 3

30 0 0 0 0 3 3

36 0 0 0 0 3 3

ORE 

VALIDAZIONE

FALSI ALLARMI MANCATI ALLARMI CORRETTI POSITIVI

MCP: APPLICATION

Gridded hourly precipitation 

and temperature data

Observed hourly 

discharge at Eldon

01/10/1995 30/09/200231/05/1997 31/01/1998

ANN:        
CALIBRATION

VERIFI
C.

VALIDATION

01/10/1995 30/09/200231/05/1997 01/05/2000

MCP:                                                      VALIDATION                            
CALIBRATION

BARON FORK RIVER AT ELDON, OK, USA

Available data, provided by the NOAA’s National Weather Service, within 

the DMIP 2 Project:

TOPKAPI 

MODEL

H0

EVAPOTRANSPIRATION

UNDERGROUND
LOSSES

X5 H4

T4

D4

RAINFALL

EXCEDENT

INFILTRATION

PERCOLATION

T1

X4

X3

X2 Hu

H2

T3

H3

D3

D2

T2

H1

Y0

SNOWMELT

X1

X0

D1

Y1

BASE FLOW

Y4

INTERFLOW

DIRECT

RUNOFF

Y3

Y2

T0

PRECIPITATION

SNOW

TETIS MODEL

ANN MODEL
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Time has passed since the concept of Predictive 
Uncertainty was introduced in Bayesian Statistics.

Unfortunately, limited operational use of PU can be 
found in the fields of Flood Forecasting,

Flood Emergency Management and 
Water Resources Management 

mostly due to the widespread  confusion  on 
the PU definition and concepts.

CONCLUSIONS (1/3)
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Whereas the use of HUPs for operational purposes 
is in progress, the use of  Meteorological QPF 
for the estimation of PU has not yet reached a 

resonable level of acceptance.
This is due to two main reasons: 

1)The first one is due to the lack of 
understanding of the operational use and of the 
real benefits deriving from incorporating  PU in 

the decision process.
2) The second one relates to the “lack of will”

shown by the meteorological organisations  when 
requested to re-run their models on past data.

CONCLUSIONS (2/3)
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In practice we hydrologists have the following 
homework: we must convince stakeholders 

and meteorologists of the real benefits deriving
from the estimation and use of

Predictive Uncertainty 
in 

flood  warning, flood emergency  and 
water resources management

CONCLUSIONS (3/3)

QUESTIONS
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Thank you for your 
patience and attention


