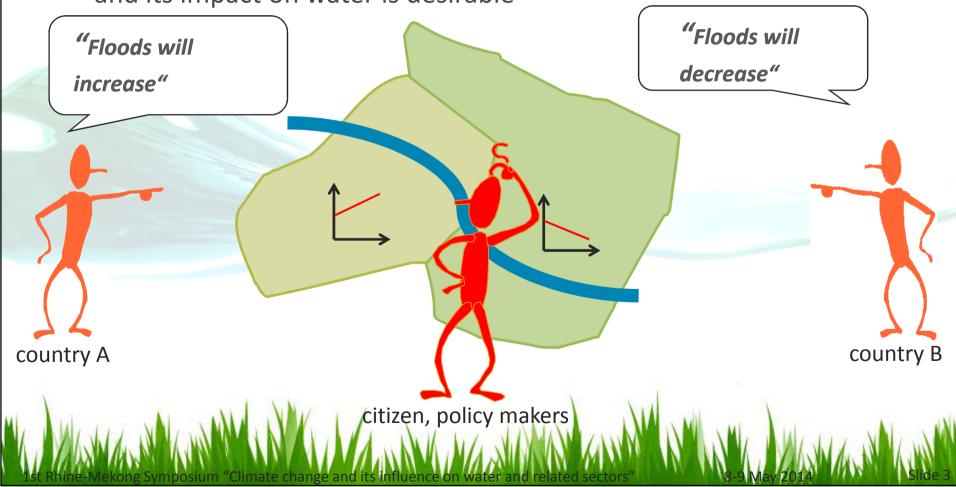


Comparative overview of climate change and ways to an adaptation strategy in the Rhine and Mekong basins

1st Rhine-Mekong Symposium

"Climate change and its influence on water and related sectors" 8-9 May 2014, Koblenz, Germany


Dr. Kai Gerlinger
HYDRON Consulting Engineers (Germany)

Content

- 1. Common knowledge base
- 2. Observed climate changes
- 3. Climate projections
- 4. Projections of IPCC AR5
- 5. Impacts projected in IPCC AR5
- 6. Uncertainty and complexity
- 7. Approach to basin-wide adaptation
- 8. Summary


1. Common knowledge base

- Hydrology and climate change are both transboundary subjects
- Transboundary cooperation in the assessment of climate change and its impact on water is desirable

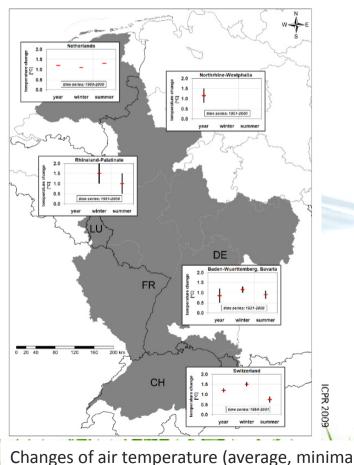
1. Common knowledge base

Initial transboundary review of existing knowledge on climate change and its impacts on hydrology

MRC

Climate Change and Adaptation Initiative (CCAI

DRAFT


Review of the Literature on Climate Change and Adaptation in the Water Environment of the LMB

March 2014

3. Observed changes

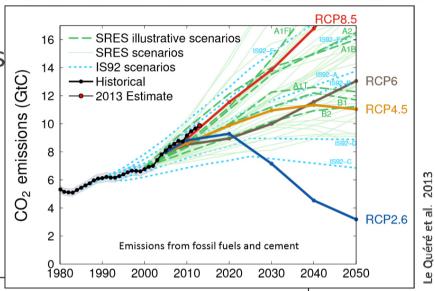
- Climate change is already observable in temperature records
- Increase ranges are similar in the Rhine and Mekong basin (+0.08 to +0.18°C/decade)

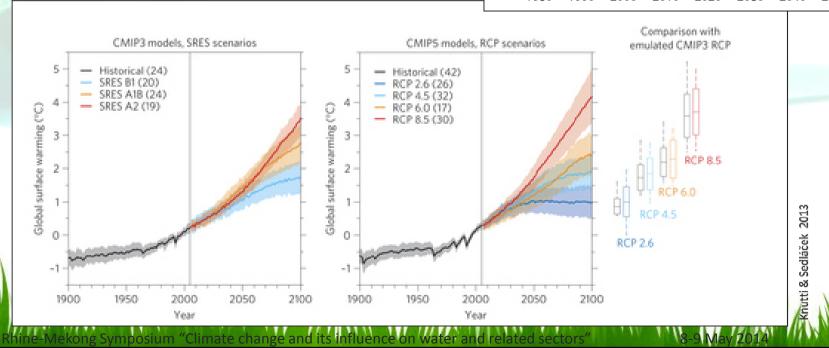
ICPR

and maxima)

MRC

Changes of annual air temperature [°C/decade]




3. Observed changes

- Also sea level rise is already observable
- Climate change is already observable in temperature records, but trends are heterogeneous in time and space
- Heterogeneity represents inherent spatial variability of climate change
- But there are also differences in underlying data basis (e.g. data quality, density of stations, lengths of time series) and methods of analysis
- Changes in precipitation are much more heterogeneous than in temperature
- to keep track of current climate change, transboundary harmonization of data analysis is helpful. Measuring network has to be maintained.

Climate modelling is applied to as

Atmospheric
greenhouse gas
concentrations
Emission
scenario

Climate modelling is applied to assess future climate change

Atmospheric
greenhouse gas
concentrations
Emission
scenario

Global climate model (GCM) (complex, feedback climate system) Downscaling
(regional processes,
consideration of small-scale
heterogeneity)
-> time series of climate
parameters

Impact modellinge.g. hydrologicalmodelling-> time series of

-> time series of discharge

HSG 2012

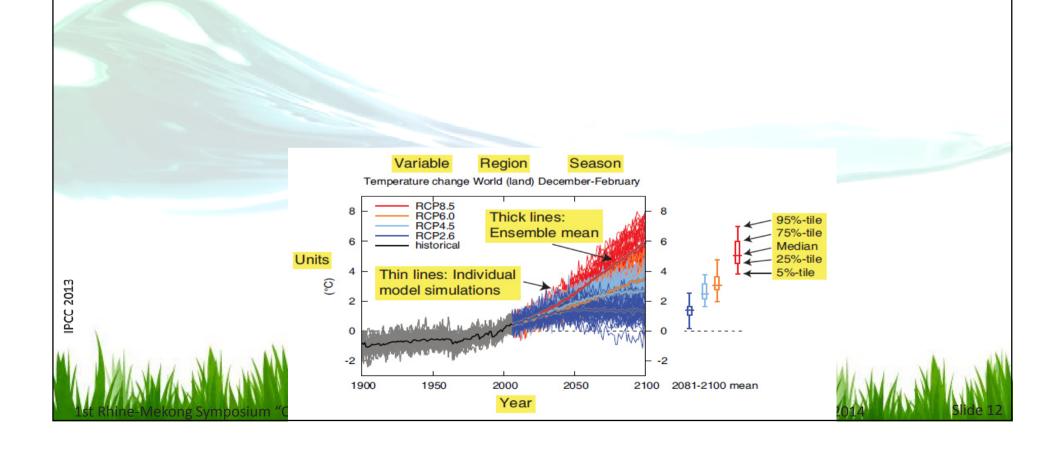
 Different climate projections exist and have been analyzed for both basins

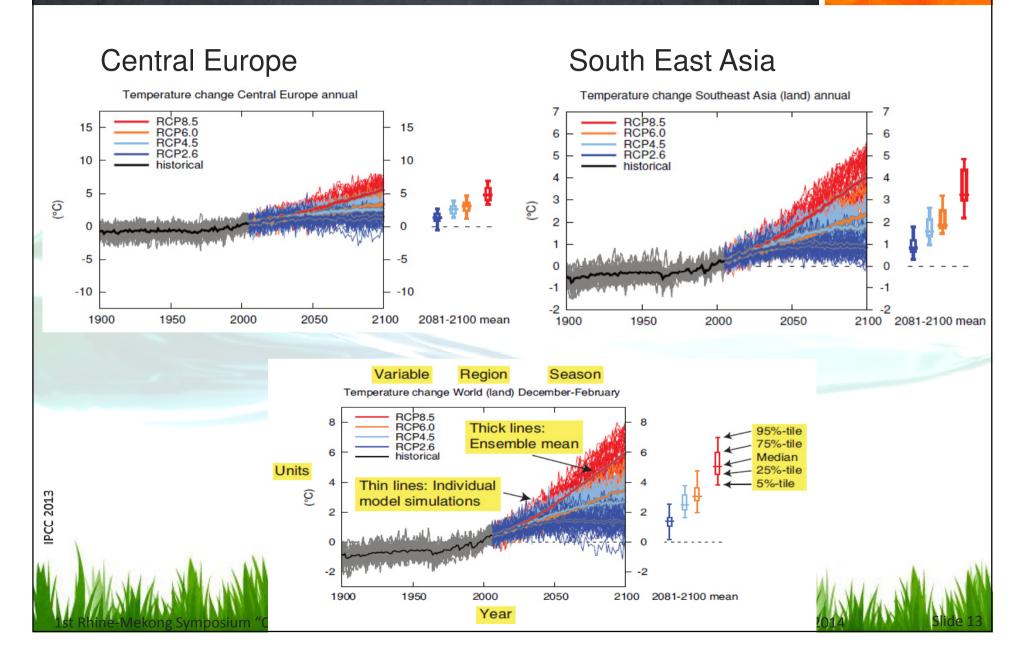
ICPR

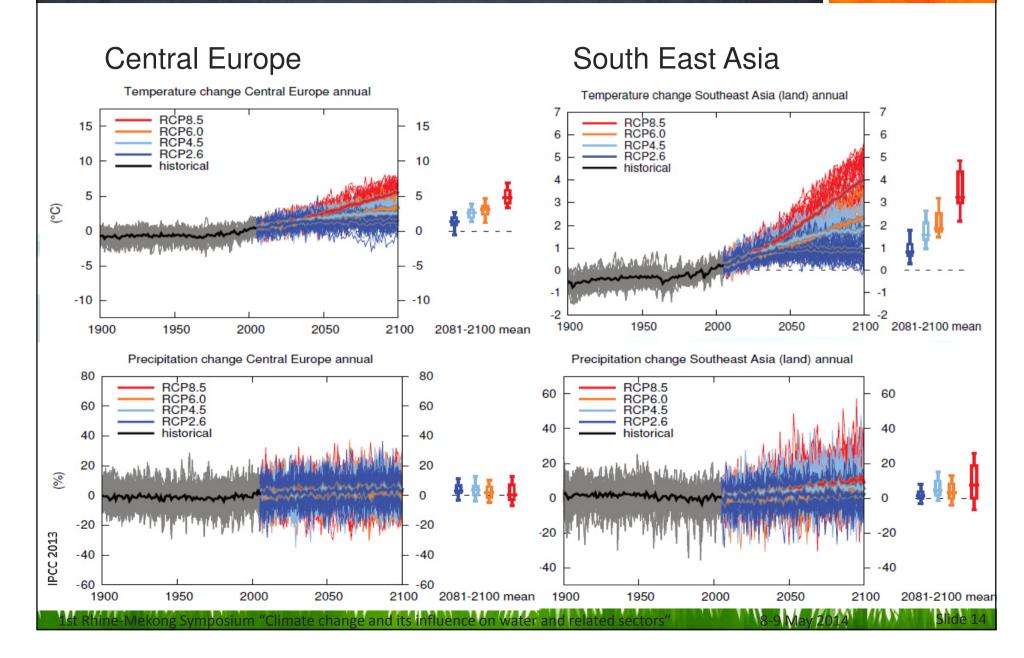
Тур	Bezeichnung	Antrieb Szenarien,	max. hor.	Auflösung	max. zeitl.	max. Zeit-	Ersteller RCM (Land)	
	(Version)	Modell (Land)	0	km	Auflösung	raum	Datenbank	
Dynamisches	CLM	Szenarien 20C, A1B, B1, A2	0.165	18	Н	1960-2100	CLM-Community (D)	
Downscaling	(2,4,11)	MPI-ECHAM5-MPI-OM (D) run 1, 2 und 3					CERA	
Klimamodell	REMO	Szenarien 20C, A1B, B1, A2	0.088	10	H	1950-2100	MPI-M (D)	
RCM	(UBA)	MPI-ECHAM5-MPI-OM run 1 (D)					CERA	
Dynamisches	REMO	Szenarien 20C, A1B	0.088	10	H	1950-2100	BfG, MPI-M (D)	
Downscaling	(BFG)	MPI-ECHAM5-MPI-OM run 2 (D)						
statistisches	STAR	Szenario AI B	Stationen	Stationen	D	2001-2055	PIK (D)	
Downscaling	(2,0)	(MPLECHAM5-MPLOM (D)						
statistisches	WETTREG	Szenarien A1B, B1, A2	Stationen	Stationen	D	1961-2100	Meteo Research (D)	
Downscaling	(UBA)	MPI-ECHAM5-MPI-OM (D)					CERA	
,	HIRHAM	ERA40, Szenarien 20C, A1B	0.22	25	Н	1950-2100	DMI (DK)	
Downscaling		MPI-ECHAM5-MPI-OM (D)			i		ENSEMBLES	
		CNRM-CM3 (F)						
	RCA	ERA40, Szenarien 20C, A1B HADGEM1	0.22	25	H	1950-2050	SMHI (S)	
Downscaling		(GB)					ENSEMBLES	
		HADCM3 (GB)						
		NERSC-BCCR_BCM2 (US)						
,	RACMO	ERA40, Szenarien 20C, A1B MPI-ECHAM5-	0.22	25	Н	1950-2050	KNMI (NL)	
Downscaling		MPI-OM (D) ERA40, Szenarien 20C, A1B MPI-ECHAM5-			. <u>L</u>		ENSEMBLES	
	RegCM		0.22	25	H	1950-2050	ICTP (I)	
Downscaling		MPI-OM (D)			. L		ENSEMBLES	
,	HadRM	ERA40, Szenarien 20C, A1B HADGEM1	0.22	25	H	1950-2100	METO-HC (GB)	
Downscaling		(GB)			:		ENSEMBLES	
:		HADCM3 (GB)	-		-	•	:	
		MPI-ECHAM5-MPI-OM (D) ERA40, Szenarien 20C, A1B CNRM-CM3 (F)			<u></u>			
	ARPEGE	ERA40, Szenarien 20C, A1B CNRM-CM3 (F)	0.22	25	H	1950-2050	CNRM (F)	
Downscaling		↓					ENSEMBLES	
	REMO	ERA40, Szenarien 20C, A1B MPI-ECHAM5-	0.22	25	Н	1950-2100	MPI-M (D)	
Downscaling		MPI-OM run 3 (D)			İ		ENSEMBLES	
		IPSL-CM4 (CH)						
	PROMES	ERA40, Szenarien 20C, A1B HADGEM1	0.22	25	H	1950-2050	UCLM (E)	
Downscaling		(GB)					ENSEMBLES	
		HADCM3 (GB)			L			
	CHRM	ERA40, Szenarien 20C, A1B HADGEM1	0.22	25	H	1950-2050	ETH (CH)	
Downscaling		(GB)					ENSEMBLES	
		HADCM3 (GB) ERA40, Szenarien 20C, AIB						
,	CLM	ERA40, Szenarien 20C, A1B	0.22	25	H	1950-2100	ETHZ, GKSS	
Downscaling		J ????			. L	i	ENSEMBLES	

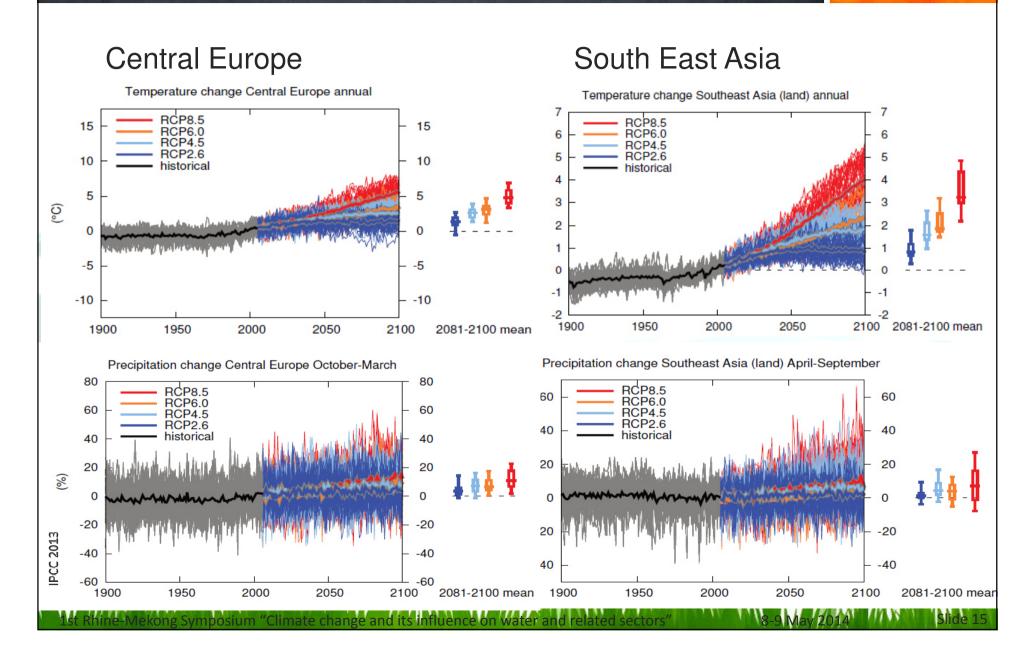
CPR 200

• Different climate projections exist and have been analyzed for both basins

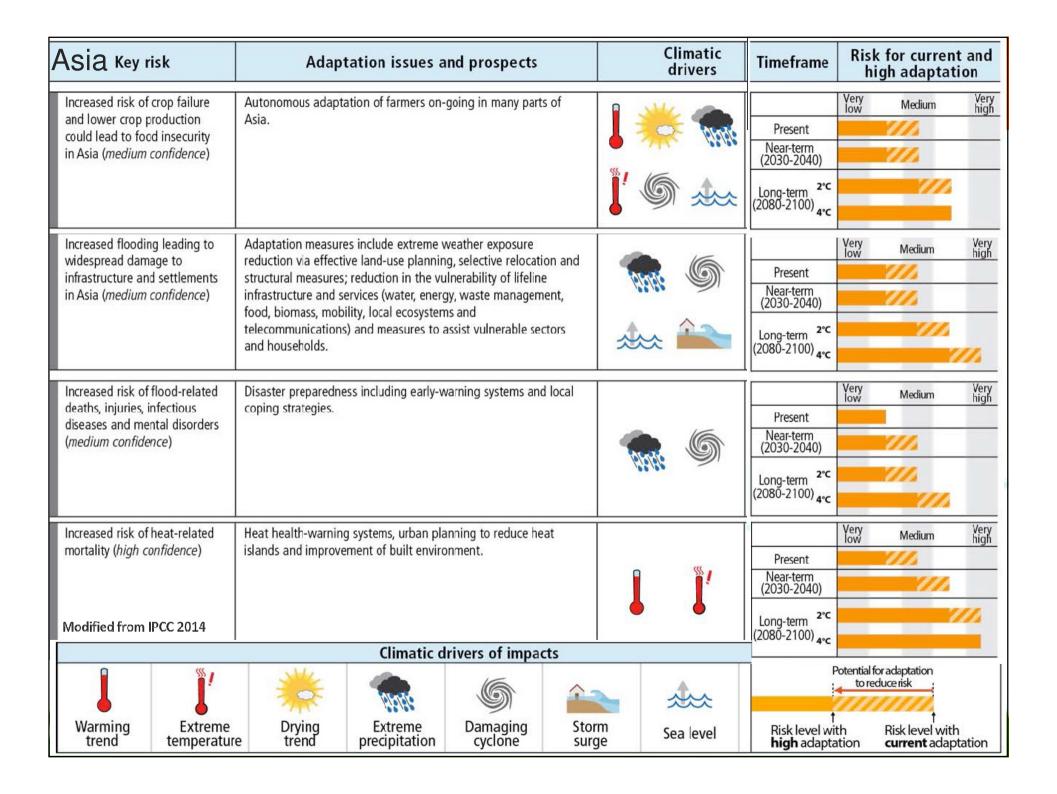

MRC

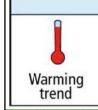

Ī		Lauri et al. 2012		Kingston et al. 2011		Thompson et al. 2013			Johnston et al. 2009		Kiem et al. 2008	Chinvanno et al. 2006	Hoanh et al. 2003	Snidvongs et al. 2003	
ŧ											Mekong Basin	LMB	LMB	LMB	
	GCM		ECHAM5	UKMO HadCM3 CCCMA CGCM31 CSIRO Mk30 IPSL CM4 MPI ECHAM5 NCAR CCSM30 UKMO	UKMO HadCM3 CCCMA CGCM31 CSIRO Mk30 IPSL CM4 MPI ECHAM5			ECHAM4		11 GCMs	JMA AGCM		HadCM3	CCAM (RCM)	
	Downscalin g method	Statistical downscaling	WRF (dynamical	ClimGen (pattern-scaled	ClimGen (pattern-scaled	ClimGen (pattern-scaled downscaling)	PRECIS	PRECIS	PRECIS	Pattern-scaling	-	-	-	-	
		,	ŕ	global warming of +0.5-+6°C	Prescribed global warming of +2°C	of +1.0-+6°C	ŕ	,	A2, B2		A1B	720 ppm	A2, B2	700 ppm	
	Baseline period	1982-1992	1971-2000	1961-1990	1961-1990	1961-1990	1985-2000	1995 to 2004		1961 -1990	1979–1998	360 ppm	1961-1990	350 ppm	
	Scenario period	2032-2042	2001-2030 (I) 2021-2050 (II)	_	_	_	2010-2050	2010-2049	1960-2049	2030	2080-2099		2010-2039 (I) 2070-2099 (II)	700 ppm	
- 11	temperatur	+0.8-+1.4°C (A1B) +0.6- +1.3°C (B1)	+0.17°C (B1 I) +0.38°C (A1B I) +0.6°C (B1 II) +1.39°C (A1B II)		+2°C (prescribed)	+1.0-+6°C (prescribed)			+0.023°C/yr to +0.024°C/yr	+0.68-+0.81°C	+2.6°C			increase in daily max. temperature by +1-+3°C from Jan. to May, decrease from Oct. to Dec.	~
- 11	precipitatio	2.5-+8.6% (A1B) +1.2- +5.8% (B1)	-5mm (A1B I) +74mm (B1 II) -20mm (A1B II)	changes, except for three	reaching from - 6.1-+12.3% for different sub- catchments	different sub- catchments for 1°C-scenario; -6.9-+30.2% for	(A2); wet season: +1.2mm/yr (B2)	Västilä et al. 2010, Scenario A2 only)	no significant change in mean annual precipitation, wetter wet season in North Myanmar and Gulf of Thailand, drier dry seasons around Gulf of Thailand	range of models: +0.5- +36.0%	+4.2%	precipitation increases from	-0.2% (B2 I) +0.2% (A2 I) +9.4% (B2 II) +9.8% (A2 II)	drier and longer dry seasons	MRC CCAI 2014


 Different climate projections exist and have been analyzed for both basins


to assess future climate change, transboundary cooperation in the selection of an ensemble of suitable climate projections is desirable

• IPCC's Fifth Assessment Report provides results of most recent and comprehensive global climate modelling

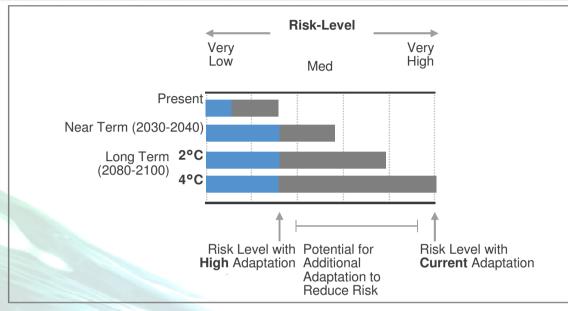


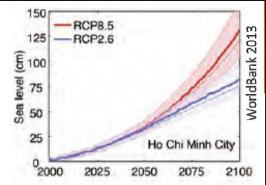


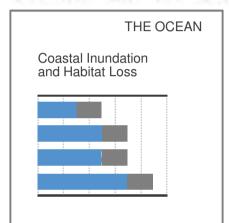
Europe Key	/ risk	Adaptation issue	s and prospects	Climatic drivers	Timeframe		or current adaptati	7.7
Increased economic loss by flooding in river basin increasing urbanisation sea-levels and increasing (high confidence)	ns and coasts, driven by and by increasing	Adaptation can prevent mos (high confidence). The experi protection technologies is sig include the high costs for inc demand for land in Europe, a landscape concerns.	ence in hard flood gnificant. Main issues creasing flood protection		Present Near-term (2030-2040) Long-term (2080-2100) 4°C	Very low	Medium	Very high
sectors (irrigation, energ	ability from river oundwater resources, demands from a range of gy and industry, domestic ter drainage and run-off	Proven adaptation potential technologies and adoption of technologies and of water sacrop species, land cover, indufurther adaptation possible (to limit fossil fuel demand).	of more water efficient diving strategies (irrigation, distries, domestic use).		Present Near-term (2030-2040) Long-term (2080-2100) 4°C	Very low	Medium	Very high
Increased economic loss by extreme heat events: welfare (overheating in productivity, crop produ (medium confidence)	impacts on health,	Implementation of warning s dwellings and work places, a infratructure. Reductions in quality. Improved wild fire m	and transport and energy emissions to improve air	"!	Present Near-term (2030-2040) Long-term (2080-2100) 4°C	Very low	Medium	Very
	Risk & potential for adaptation							
Warming trend	Extreme temperature	Extreme precipitation	Damaging cyclone	Sea level	Risk level wit			ation

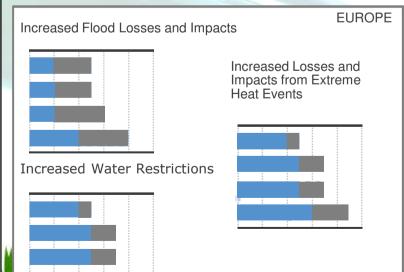
Asia Key risk	Adaptation issues and prospects	Adaptation issues and prospects Climatic drivers Timeframe Ris					
Increased risk of drought-related water and food shortage causing malnutrition (high confidence)	Disaster preparedness including early-warning systems and local coping strategies.		Present Near-term (2030-2040) Long-term (2080-2100) 4°C	Very Medium Very high			
Increased risk of water and vector-borne diseases (medium confidence)	Early-warning systems, vector control programs, water management and sanitation programs.		Present Near-term (2030-2040) Long-term (2080-2100) 4°C	Very Medium Very high			
Exacerbated poverty, inequalities and new vulnerabilities (high confidence)	Insufficient emphasis and limited understanding on urban poverty, interaction between livelihoods, poverty and climate change.		Present Near-term (2030-2040) Long-term (2080-2100) 4°C	Very Medium Very high			

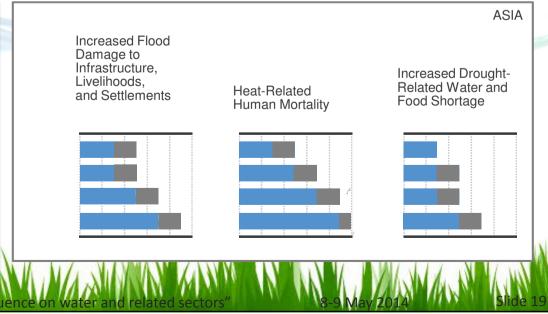
Modified from IPCC 2014

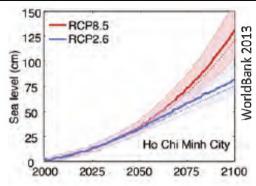

Climatic drivers of impacts

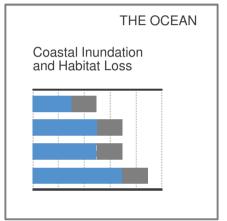


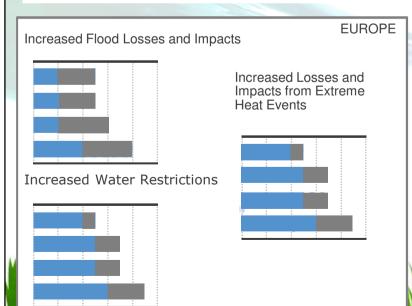


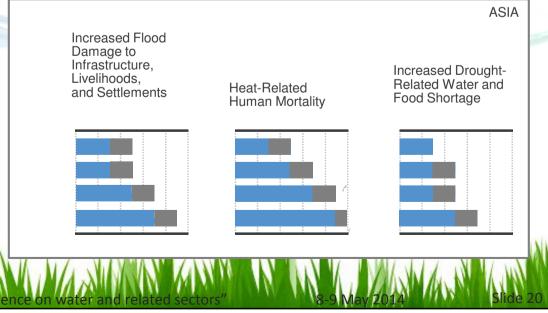

Sea level


Risk & potential for adaptation Potential for adaptation to reduce risk to reduce risk Risk level with Risk level with high adaptation Risk level with current adaptation

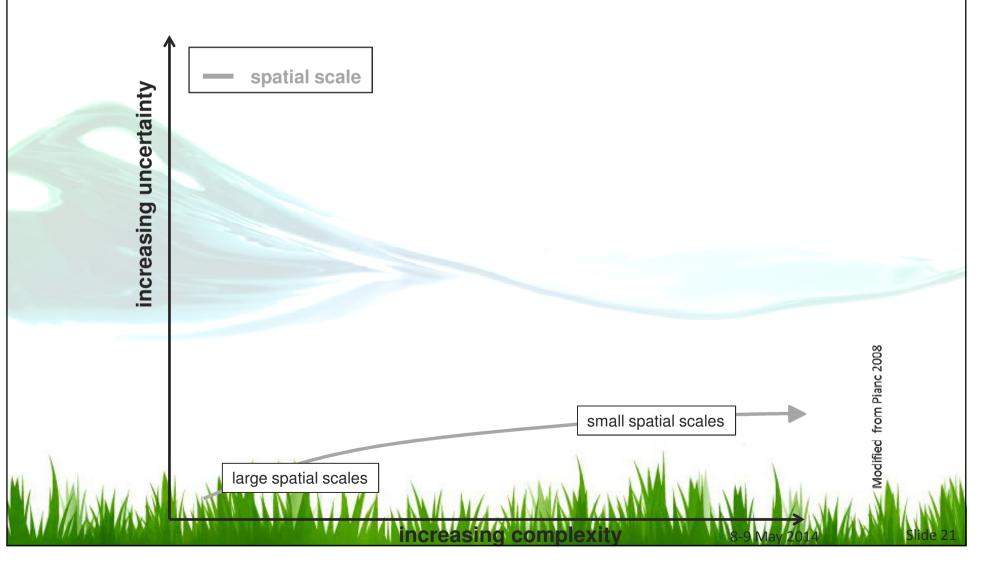


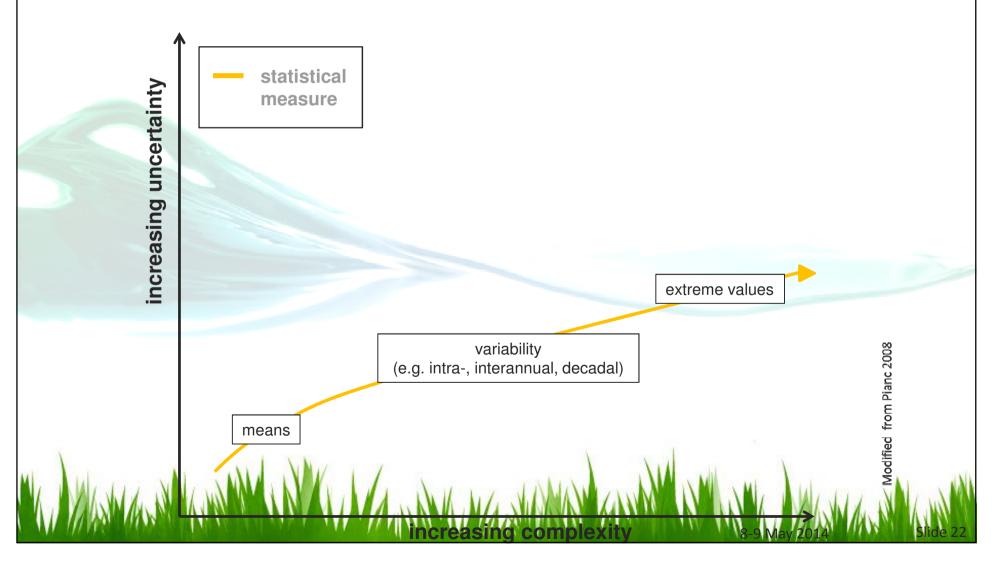




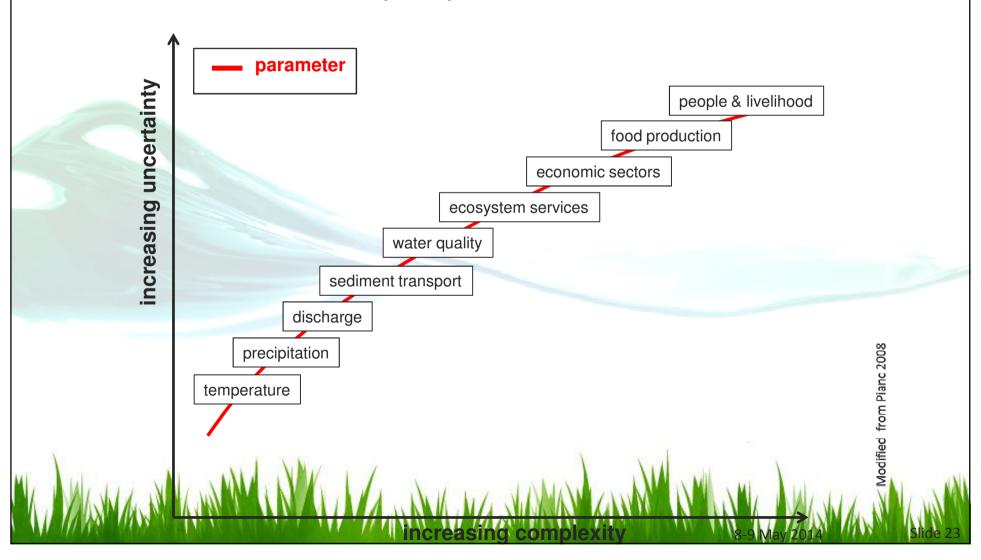


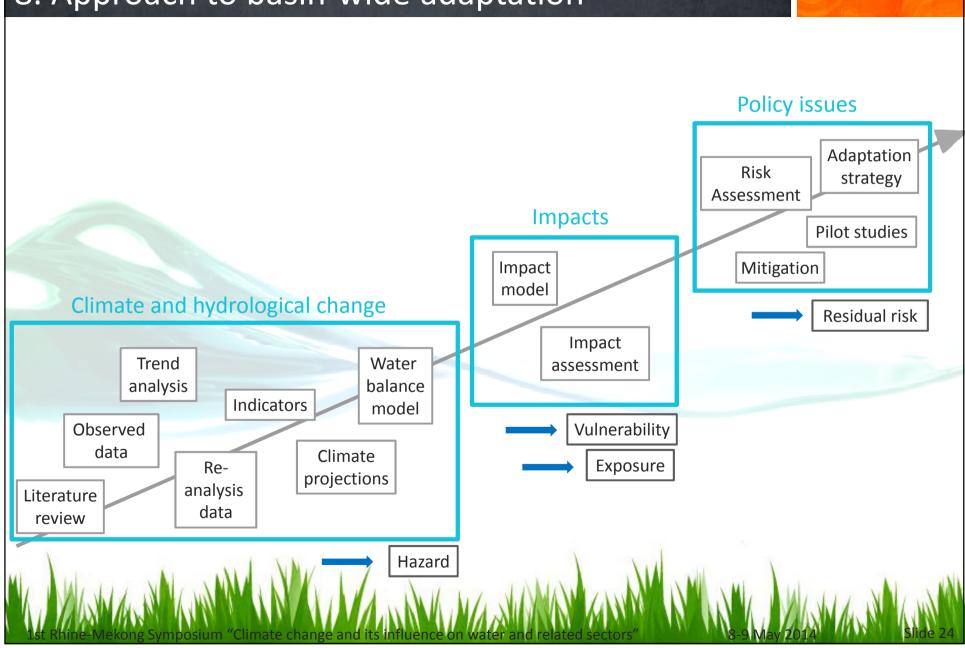
 Hazards are similar, but risks in Europe are of more economic nature, while in South East Asia risks of more substantial nature (life, health) are a major concern

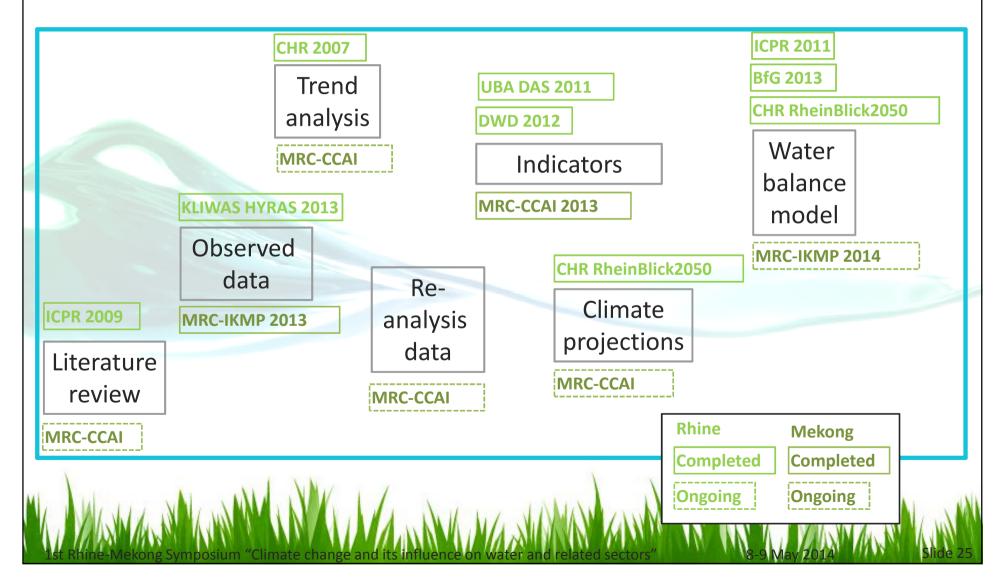



7. Uncertainty and complexity

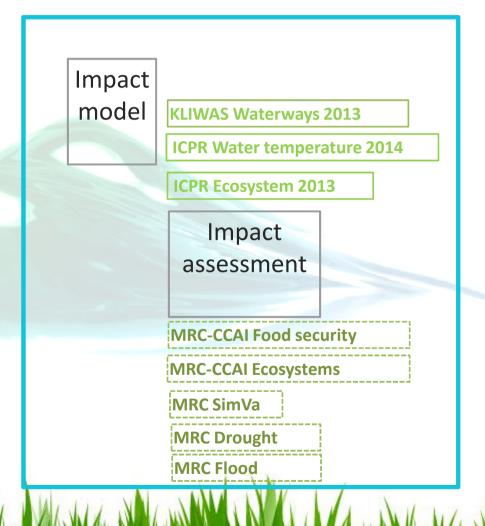
• To obtain regional climate projections is more complex ("downscaling") and regional assessment of climate change contains larger uncertainties


7. Uncertainty and complexity


• For effective adaptation, projections of extremes are sought for; related uncertainty has to be borne in mind


7. Uncertainty and complexity

 The approach to adaptation consists of numerous steps; associated uncertainty may cascade

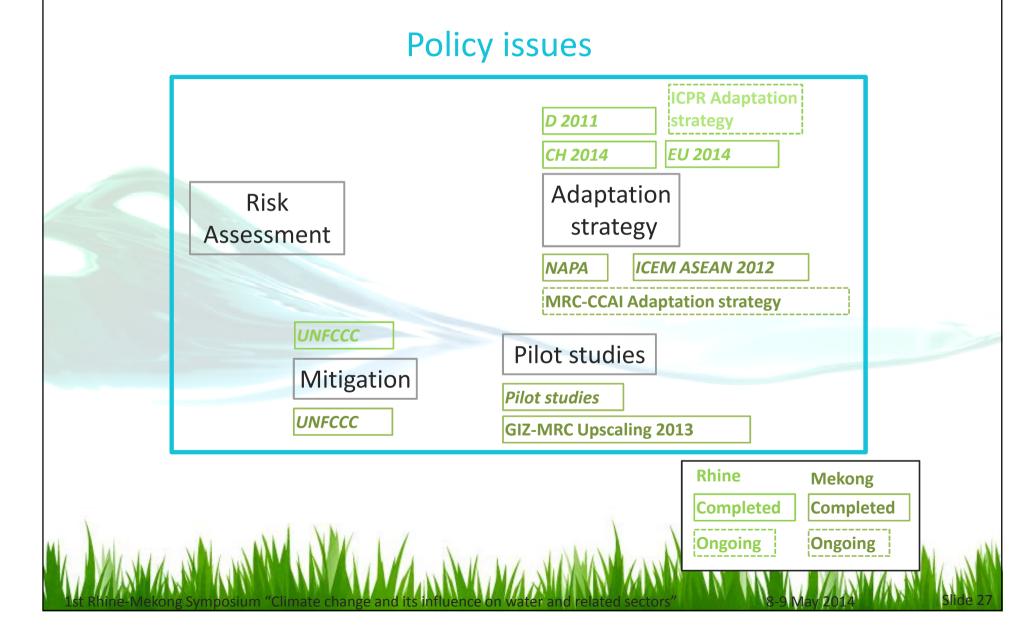


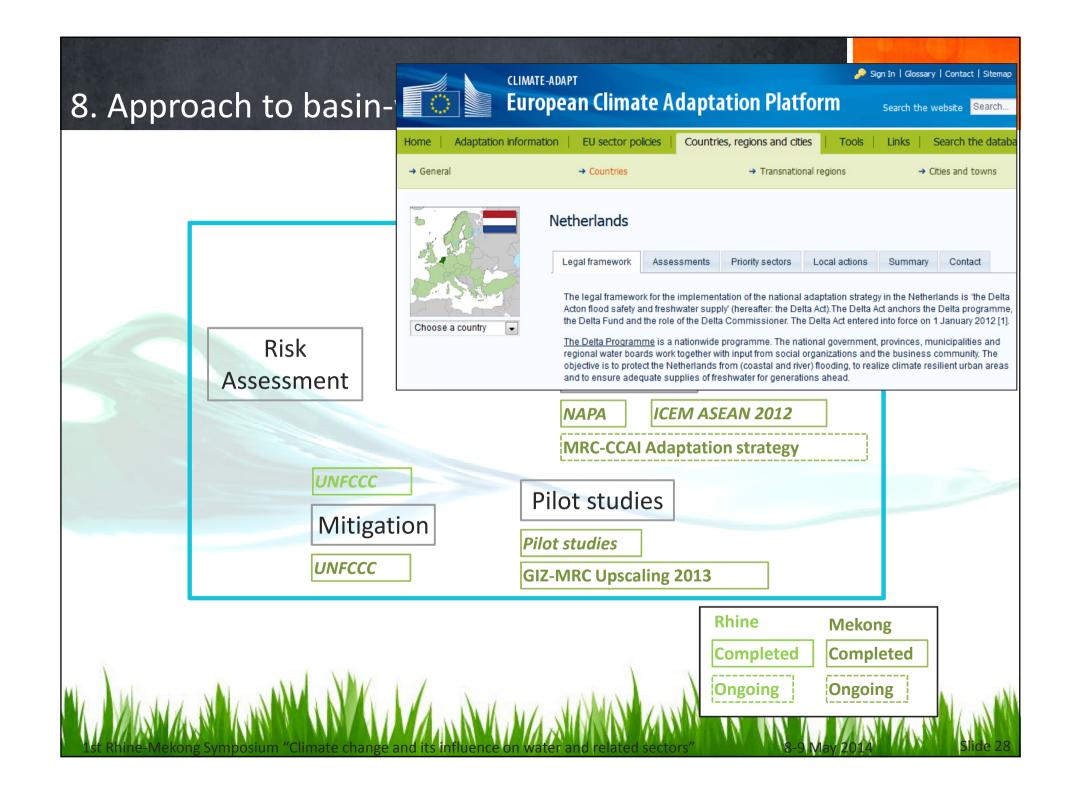
Climate & hydrological change

Impacts

CHR

Further influencing factors: e.g. basin development, hydropower

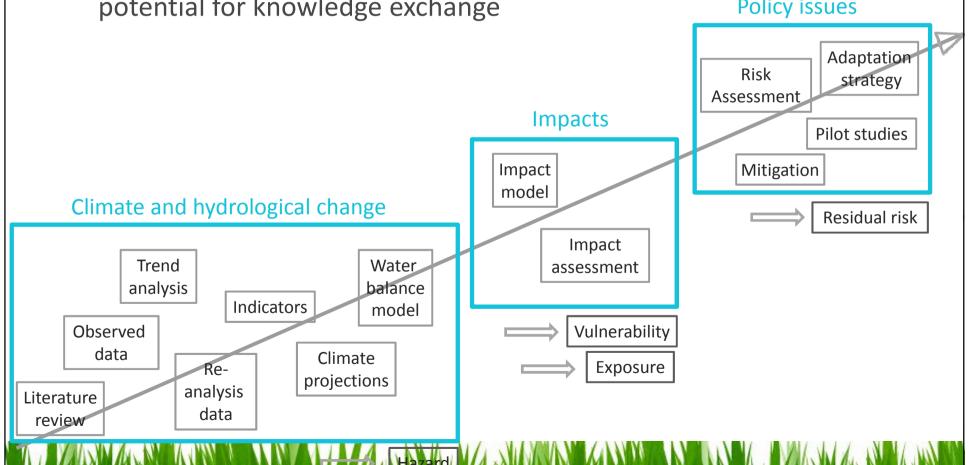

MRC Basin Development Strategy


Rhine Mekong

Completed Completed

Ongoing

Ongoing



 Several steps on the way towards adaptation strategies have already been taken in both basins

Similar approaches may be applied for both basins, which implies potential for knowledge exchange

Policy issues

Summary

- Adaptation to climate change and its impact on water related sectors requires transboundary cooperation
- Climate change is already manifest in temperature records of both basins
- Trends in precipitation so far are much more heterogeneous
- Results for future climate change feature equivocally further temperature increases for both basins, heterogeneity of precipitation projections is large for both basins
- Hazards are similar, but resulting risk may be of more substantial nature in the LMB
- For coordinated adaptation, harmonization of both, data analysis and climate modelling within the basin is desirable
- Approach towards adaptation strategy consists of these and further steps
- Several steps on the way towards adaptation strategies have already been taken in both basins
- Similar approaches may be applied for both basins, which implies potential for knowledge exchange
- The uncertainties should not stop decisions being made.

Thank you for your attention!

Bibliography

- Dixon, K.W., Hayhoe, K., Lanzante, J., Stoner, A. & Radhakrishnan 1A. (2013): Examining the stationarity assumption in statistical downscaling of climate projections: Is past performance an indication of future results? Presentation at annual meeting of the American Meteorological Society, Austin, Texas. January 2013.
- Le Quéré, C., Peters, et al. (2013): Global carbon budget 2013, Earth Syst. Sci. Data Discuss., 6, 689-760, doi:10.5194/essdd-6-689-2013, 2013.
- HSG (2012): Internet page "Climate Service Centers"
 http://www.hzg.de/science and industrie/klimaberatung/csc web/011581/index 0011581.html.de
- ICPR (2009): Analysis of the state of knowledge on climate change so far and on the impact of climate change on the water regime in the Rhine watershed. ICPR Report No 174.
- IPCC Intergovernmental Panel on Climate Change (2013): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
- IPCC Intergovernmental Panel on Climate Change (2014): Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
- Knutti, R. & Sedláček, J. (2013): Robustness and uncertainties in the new CMIP5 climate model projections. Nature Clim. Change 3, 369–373.
- MRC CCAI (2014): Review of the Literature on Climate Change and Adaptation in the Water Environment of the Lower Mekong Basin. Unpublished draft.
- Pianc (2008): Waterborne transport, ports and waterways: A review of climate change drivers, impacts, responses and mitigation. EnviCom-Task Group 3 "Climate Change and Navigation". http://www.pianc.org/downloads/envicom/envicom-free-tg3.pdf
- World Bank (2013): Turn Down the Heat: Climate Extremes, Regional Impacts, and the Case for Resilience. A report for the World Bank by the Potsdam Institute for Climate Impact Research and Climate Analytics. Washington, DC: World Bank.

Literature review:

Rhine:

ICPR (2009): Analyse des Kenntnisstands zu den bisherigen Veränderungen des Klimas und zu den Auswirkungen der Klimaänderung auf den Wasserhaushalt im Rhein-Einzugsgebiet. Bericht 174. http://www.iksr.org/fileadmin/user_upload/Dokumente_de/Berichte/Bericht_174_d.pdf

Mekong:

MRC CCAI (2014): Review of the Literature on Climate Change and Adaptation in the Water Environment of the Lower Mekong Basin. (Unpublished draft)

Observed data:

Rhine:

KLIWAS DWD 2013: Rauthe, M.; Steiner, H. Riediger, U.; Mazurkiewicz, A. & Gratzki, A. (2013): A Central European precipitation climatology – Part I: Generation and validation of a high-resolution gridded daily data set (HYRAS). - Meteorologische Zeitschrift Band 22 Heft 3, p. 235 – 256

Mekong:

MRC-IKMP 2013: Preview data, tool and model at modelling component - Final Technical Report IKMP November 2013. (Unpublished) MRC-CCAI (2013). Review of availability of meteorological data in the LMB - working paper No. 1. (Unpublished)

Trend analysis

Rhine:

CHR (2007): Das Abflussregime des Rheins und seiner Nebenflüsse im 20. Jahrhundert. CHR Bericht Nr. I-22, International Commission for the Hydrology of the Rhine Basin, Lelystad

Mekong:

MRC-CCAI: Statistical analysis of recently climate trends and extremes – working paper No. 3. (Unpublished first draft)

MRC-CCAI: Development of baseline climate data set and trend analysis in the Mekong Basin . (Unpublished draft)

Reanalysis data

Mekong:

MRC-CCAI: Development of baseline climate data set and trend analysis in the Mekong Basin . (Unpublished draft)

Indicators

Rhine:

German Climate Atlas (2012): The German Climate Atlas published by the Deutscher Wetterdienst: possible future climate scenarios alongside information on the climate today and in the past. www.dwd.de/klimaatlas

UBA DAS (2011): Entwicklung eines Indikatorensystems für die Deutsche Anpassungsstrategie an den Klimawandel (DAS). http://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/4230.pdf

Mekong:

MRC-CCAI: A basin-wide monitoring and reporting system on climate change and adaptation: a proposed initial set of Indicators. - Working Paper No. 1 (Unpublished draft)

Climate projections

Rhine:

Görgen, K.; Beersma, J.; Buiteveld, H.; Brahmer, G.; Carambia, M.; Keizer, O. de; Krahe, P.; Nilson, E.; Lammersen, R.; Perrin, C.; Volken, D. (2010): Assessment of Climate Change Impacts on Discharge in the River Rhine Basin. Results of the RheinBlick2050 project; CHR I-23 2010. http://www.chr-khr.org/files/CHR I-23.pdf.

Mekong:

MRC-CCAI (2014): Exploratory analysis of climate change factor ranges . - Final Report (Unpublished)

Water balance models

Rhine:

BfG (2013): LARSIM-ME: Aufbau eines Wasserhaushaltsmodells Mitteleuropa. -Wolf-Schumann, U. et al.: Simulation hydrologischer Systeme - Wie nah kommen wir der Realität? Beiträge zum 3. Trierer Workshop zur Niederschlag-Abfluss-Modellierung am 17. und 18. September 2012 in Trier. Hrsg.: DWA, S.67-75

Görgen, K.; Beersma, J.; Buiteveld, H.; Brahmer, G.; Carambia, M.; Keizer, O. de; Krahe, P.; Nilson, E.; Lammersen, R.; Perrin, C.; Volken, D. (2010): Assessment of Climate Change Impacts on Discharge in the River Rhine Basin. Results of the RheinBlick2050 project; CHR I-23 2010. http://www.chr-khr.org/files/CHR I-23.pdf.

ICPR (2011): Szenarienstudie für das Abflussregime des Rheins. Bericht 188.

http://www.iksr.org/fileadmin/user upload/Dokumente de/Berichte/188 d.pdf

- Mekong:
- MRC-FMMP (2014): Climate change adaptation to future flooding in an transboundary nexus context. –

http://www.mrcsummit.org/cresentations/track1/1.1-d-Nicolaas-Presentation-FMMR-HCMC-2April2014-final.pd

Impact assessment

Rhine:

ICPR (2013): Aktueller Kenntnisstand über mögliche Auswirkungen von Änderungen des Abflussgeschehens und der Wassertemperatur auf das Ökosystem Rhein und mögliche Handlungsperspektiven. Bericht 204

http://www.iksr.org/fileadmin/user_upload/Dokumente_de/Berichte/204_d.pdf

ICPR (2014): Estimation of the effects of climate change scenarios on future Rhine water temperature development - Extensive Version. Bericht 214. http://www.iksr.org/fileadmin/user_upload/Dokumente_de/Taetigkeitsberichte/214_en.pdf

KLIWAS (2013): Auswirkungen des Klimawandels auf Wasserstraßen und Schifffahrt – Entwicklung von Anpassungsoptionen. KLIWAS kompakt 22 http://www.kliwas.de/KLIWAS/DE/02 Aktuelles/12 statuskonf 2013/kliwas kompakt 1311.pdf? blob=publicationFile

Mekong:

MRC-CCAI (2013): Past and future trends in crop production and food demand and supply in the Lower Mekong Basin. (Unpublished draft)
MRC (2013): An initial drought risk and vulnerability assessment of the Lower Mekong Basin. MRC Drought Management Programme. (Unpublished draft)

MRC (2014): Livelihoods dependence on natural resources along the Mekong Mainstream. - http://www.mrcsummit.org/presentations/track2/3.2-d-livelihood-dependence-on-natural-resources-ThimLy.pdf

MRC-FMMP (2014): Climate change adaptation to future flooding in an transboundary nexus context. – http://www.mrcsummit.org/presentations/track1/1.1-d-Nicolaas-Presentation-FMMP-HCMC-2April2014-final.pdf

ICEM (2013): USAID Mekong ARCC Climate Change Impact and Adaptation: Main Report. Prepared for the United States Agency for International Development by ICEM - International Centre for Environmental Management

Mitigation

Rhine/Mekong:

UNFCCC: United Nations framework convention on climate change: first and second communications. http://unfccc.int/national_reports/non-annex i natcom/items/2979.php

Pilot studies

Mekong:

GIZ-MRC Upscaling (2013): Krumsiek/MRC (2013): Climate change adaptation in the Lower Mekong Basin: An overview of activities and trends with a view to lessons learned for project planning and upscaling. (Unpublished draft)

Adaptation strategy

Rhine:

CH (2014): Anpassung an den Klimawandel in der Schweiz Aktionsplan 2014–2019. Zweiter Teil der Strategie des Bundesrates vom 9. April 2014. Bundesregierung (2011): Aktionsplan Anpassung der Deutschen Anpassungsstrategie an den Klimawandel . http://www.bmub.bund.de/fileadmin/bmu-import/files/pdfs/allgemein/application/pdf/aktionsplan_anpassung_klimawandel_bf.pdf
European Climate Adaptation Platform: http://climate-adapt.eea.europa.eu/countries/germany

Mekong:

WWF/Word Bank (2013): Operational framework for ecosystem-based adaptation.

http://awsassets.panda.org/downloads/wwf_wb_eba_project_2014_gms_ecosystem_based_adaptation_general_framework.pdf

• NAPA (National action and adaptation programme): http://unfccc.int/adaptation/workstreams/national adaptation programmes of action/items/4585.php

