

Sediment budgeting on event scale vs. long time scales

Marcel van der Perk, Hans Middelkoop

Department of Physical Geography, Utrecht University
The Netherlands

Acknowledgements

Gilles Erkens (Utrecht University, Deltares)

Noortje Hobo (Utrecht University, Alterra)

Bart Makaske (Alterra)

Menno Straatsma (Utrecht University)

Contents

Focus on the Rhine-Meuse delta

Contents

Sediment trapping in the Rhine-Meuse delta

- Budget approaches
- Past, present, and future sediment trapping
 - Event scale
 - Contemporary sedimentation rates
 - Future sediment trapping
 - Decennial time scale
 - Century time scale
 - Millennial time scale
- Synthesis and conclusions

Sediment budget – aims

- Identify and quantify sediment sources
- Quantify sediment delivery to downstream areas
- Identify drivers for sediment delivery

Sediment budget - concept

$$\Delta S = I - O$$

Sediment budget – event scale

But:

- -I and O difficult to measure / monitoring data is scarce
- -I and O are large compared to ΔS , so large error in ΔS

Sediment budget – event scale

- I measured using sediment traps
- Assumption: $O \approx 0$, so $\Delta S \approx I$

Sediment budget – longer time scales

- I estimated from dating soil or sediment cores
- $-O \neq 0$ and need to be estimated from geological reconstructions
- Approach can also be applied for larger areas (deltas)

Event scale

Bemmel floodplain – measured sedimentation

Method: Measurement of contemporary overbank sedimentation after several flood events using sediment traps.

Results: During the high-magnitude 1993 flood, total deposition along the Waal (main branch) was 0.24 Mton.

Comtemporary sedimentation rates

Bemmel floodplain – simulated sedimentation

Method: Using 2D models for overbank flow and sedimentation, we calculated average annual sedimentation.

Comtemporary sedimentation rates

Rhine floodplains - simulated sedimentation

Method: Using 2D models for overbank flow and sedimentation we calculated average annual sedimentation.

Results: To date, about 39% of the annual suspended sediment load is trapped by all lower Rhine floodplains together.

Simulated present-day annual sediment deposition (kg m⁻² y⁻¹)

> 2.0

1.0 - 2.0

0.5 - 1.0

0.25 - 0.5

< 0.25

Future sediment trapping

Climate change and landscaping measures

Methods: Using the 2D models we simulated annual sediment deposition for future scenarios of climate and landscaping measures (lowering floodplain surface, removal of minor embankments, digging side channels).

Future sediment trapping

Climate change and landscaping measures

Results: Climate change enhances deposition by + 60%; landscaping measures increase trapping efficiency: deposition doubles

Decennial time scale

Normalized Rhine river after 1850

After 1850 the channels were normalized by groynes, preventing lateral bank erosion. Due to the channel fixation, re-mobilisation of older sediments has not occurred.

Method:

Post-1850 sediments were traced by enhanced heavy metal concentrations.

The pollution history was reconstructed from floodplain lake sediments.

Decennial time scale

Normalized Rhine river after 1850

Results:

The total sediment deposition after 1850 AD amounts to 173 Mton (109 kg).

Century time scale

Embanked Rhine river after 1200

After embankment (1200 and 1350 AD), sediment deposition was limited to narrow zones along the main channels.

Century time scale

Embanked Rhine river after 1200

Method:

Using coring data the amount of overbank deposits was estimated. OSL dating and historic river maps were used to reconstruct lateral accretion and post-depositional erosion of floodplains.

Results:

After embankment, the floodplains have trapped 640 Mton overbank fines. About 70-80% of the floodplain deposits were re-eroded by lateral channel migration.

Holocene natural delta

Holocene natural delta

Method: Using a large coring database the amounts of sediment trapped over the past millennia were determined using 8 detailed cross sections. Age control was based on >200 ¹⁴C-datings.

Holocene natural delta

Method: Using a large coring database the amounts of sediment trapped over the past millennia were determined using 8 detailed cross sections. Age control was based on >200 ¹⁴C-datings.

Holocene natural delta

Results: Sediment accumulation increased after 2000 BP.

Synthesis

Sediment accumulation in the Rhine delta

Synthesis

Sedimentation in the Rhine delta

- Deforestation in the river basin increased deposition in the delta after 2000 BP. The bulk of these deposits have been well preserved.
- Embankment of the river channels enhanced deposition, but preservation of deposits was low.
- Channel fixation resulted in aggraded floodplains, which reduced the trapping efficiency, but preserved sediment.
- Present-day floodplain sedimentation is mainly controlled by distance from inlet. Sediment remobilisation can be neglected.
- Landscaping measures will enhance floodplain deposition in the future.

Conclusions

Short vs. long time scale

	Short time scales	Long time scales
Budget items	Remobilisation/ erosion can be neglected	Remobilisation must be reconstructedSupply and remobilisation have changed over time
Identification of drivers for sediment supply	n/a	Land use change in upstream areas
Identification of drivers for sediment trapping	Distance from inlet	PreservationEmbankmentChannel fixationLandscaping measures