

Prediction, valuation and ecological effects of future stream water quality based on socio-economic scenarios and climate change predictions for 2050.

Nele Schuwirth, Mark Honti, Anne Dietzel, Peter Reichert, Christian Stamm

Project "iWaQa": Integrated management of river water quality within the National Research Program 61 on Sustainable Water Management

Eawag: Swiss Federal Institute of Aquatic Science and Technology

Conceptual framework - project iWaQa

"Integrated management of river water quality"

Decision Analytic Framework

Aims:

- •Learning about management alternatives
- •Learning about stakeholder opinions
- •Learning about influence of uncertain future
- •Identification of potential consensus-solutions
- → separating prediction of outcomes (experts) from evaluation (subjective opinion)

Schuwirth et al. 2012 EJOR: Methodological aspects of multicriteria decision analysis for policy support: A case study on pharmaceutical removal from hospital wastewater

Decision Analytic Framework

How to improve river water quality in a catchment of the Swiss Plateau?

C Objectives River Management

Reichert et al. 2011 WEL; Reichert et al. (submitted): The Conceptual Foundation of Environmental Decision Support

C Objectives Water quality management

D Create alternatives

urban

material protectior

urban drainag

e sewer verflow:

WWTP

agri-

cultur e

Management alternatives to improve water quality

none: current management practice

A: combination of all measures

fac: banning the use of biocides in facades

cso: increase CSO buffer volume

pav: decrease area of impermeable pavements

inf: increase rain water infiltration from roofs

wwtp: upgrade WWTP to remove micropoll.

bio: change to organic farming

nat: change to ext. agriculture - nature park

buf: install buffer strips to reduce spray drift

E Socio-economic scenarios horizon 2050

Boundary conditions that cannot be influenced by WQ management alternatives

	mean	income	population	urban area
Status quo	+0.4	%/year	as today	as today
Boom	+4		+730 %	+300 %
Doom	-1.5		-20 %	-
Quality of life	+2		+20 %	+5 %

Boom

Quality of life

Developed in a stakeholder workshop, Lienert et al. (submitted) $_{9}^{9}$

E Climate change - horizon 2050

- IPCC A1B emission scenario (scenarios hardly differ until 2050)
- 10 ENSEMBLES GCM-RCM model chains, daily data for precipitation & air temperature
- Neyman-Scott Rectangular Pulses (NSRP) model to generate hourly precipitation
- UKCP09 weather generator (which is based on the NSRP model) for daily values of other weather parameters

Honti, M., Scheidegger, A., Stamm, C. (2014): Importance of hydrological uncertainty assessment methods in climate change impact studies. Hydrol. Earth Syst. Sci. Discuss., 11, 501-553

E Water quality model

Pollutant transport management

F Preferences

F Elicitation of Preferences

 Higher levels: societal values elicited from stakeholders case specific

 Lower levels of some branches: require expert knowledge should be generic translation of existing assessment methods, e.g. www.modulstufenkonzept.ch, LAWA, ...

Langhans, Lienert, Schuwirth, Reichert (2013): How to make river assessments comparable: a demonstration for hydromorphology. *Ecological Indicators* 32, 264–275

G Visualization of results - hierarchy

Reichert, Schuwirth, Langhans (2013): Constructing, evaluating and visualizing value and utility functions for decision support, *Environmental Modelling & Software* 46, 283-291. [see also R-package "utility".]

G Visualization of results - table

Reichert, Schuwirth, Langhans (2013): Constructing, evaluating and visualizing value and utility functions for decision support, *Environmental Modelling & Software* 46, 283-291. [see also R-package "utility".]

G Visualization of results - catchment

Reichert, Schuwirth, Langhans (2013): Constructing, evaluating and visualizing value and utility functions for decision support, *Environmental Modelling & Software* 46, 283-291. [see also R-package "utility".]

Motivation - predicting the community composition of macroinvertebrates in (wadeable) streams to:

- •test understanding of ecosystem functioning
- •test hypotheses on food-web stability
- •identify influential sources of human disturbance
- predict consequences of management options
 (river restoration, upgrade of waste water treatment plants)
- •assess impact of **future development** (climate change, land use)

Schuwirth & Reichert (2013): Bridging the gap between theoretical ecology and real ecosystems: modeling invertebrate community composition in streams. *Ecology* 94, 368–379.

Streambugs 1.0

eawag aquatic research 8000

Schuwirth & Reichert (2013): Bridging the gap between theoretical ecology and real ecosystems: modeling invertebrate community composition in streams. *Ecology* 94, 368–379.

Ecological traits from databases

- feeding types
- body mass M
- energy content
- habitat tolerances (current, temperature, substrate, pH, salinity)
- sensitivity towards pollutants (pesticides, saprobic conditions)
- mobility, emergence,

e.g. www.freshwaterecology.info SPEAR ("Species at risk", Liess et al 2008) Tachet (Tachet et al. 2000)

Site specific model input

- 1. environmental conditions
- •Temperature (mean water temperature, summer maximum)
- •Flow conditions (no-slow-medium-high current class)
- Microhabitat/substrate
- •Light conditions (shading, light intensity at the river bed)
- •Input of organic material (leaf litter input, suspended OM)
- •Water quality (nutrients, organic matter, organic contaminants)
- 2. regional taxa pool (to exclude dispersal limitation)

Model output

 observation probability for each taxon at each site from equilibrium biomass density at constant environmental conditions

taxa with p(obs)>0.5 taxa with p(obs) < 0.5

FPOM

Litter

Periphyton

SusPOM

Catchment Glatt - Greifensee, Canton Zurich

AWEL Amt für Abfall, Wasser, Energie und Luft: Zürcher Gewässer 2012, Entwicklung – Zustand - Ausblicke

Results

	no of presence/ absence records*	max no. of results in agreement with observations	sum of taxa modelled correctly	% correct
sub-catchments	а	b	С	c/b
Pfäffikersee	1155	957	731	0.76
Mönchalt. Aa	1600	1296	966	0.75
Glatt 1	2275	1839	1325	0.72
Glatt 2	2030	1689	1253	0.74
total	7060	5781	4275	0.74

*6-11 sites per subcatchment, 4-9 observations per site, ca. 32 taxa

Model calibration with Bayesian inference at each sub-catchment increases compliance with data (to about 90%)

Importance of environmental influence factors - traits

% correct results with mean prior parameter values

sub- catchments	incl. all	excl. T -pref.	excl. sapro .	excl. current	excl. pest .	excl. feedt .	excl. TSCP	excl. TSCPF
Pfäffikersee	0.76	0.77	0.74	0.71	0.63	0.73	0.54	0.44
Mönchalt. Aa	0.74	0.74	0.72	0.69	0.60	0.73	0.50	0.48
Glatt 1	0.71	0.70	0.71	0.64	0.63	0.61	0.53	0.40
Glatt 2	0.72	0.71	0.71	0.63	0.66	0.60	0.55	0.39
total	0.73	0.73	0.72	0.66	0.63	0.65	0.53	0.42

- excl. temperature preference and saprobic valence has minor influence
- **current** preference, sensitivity to **pesticides** and feedingtypes are important factors to predict community composition of macroinvertebrates

Conclusions

- mechanistic models are valuable tools to integrate and communicate knowledge about cause-effect relationships and to test hypotheses
- most critical aspect is **treating uncertainty** in an adequate way
- multi-criteria decision support provides a framework to combine objective scientific predictions about future development and consequences of management alternatives with subjective valuation of stakeholders
- facilitates synthesis of large interdisciplinary projects

Funding

Project iWaQa: "Integrated River Water Quality Management" SNF Swiss National Research Program 61 "Sustainable Water Management"

iWaQa Team:

Christian Stamm, Mark Honti, Chris Robinson, Peter Reichert, Anne Dietzel, Rosi Siber, Nico Ghielmetti, Jörg Rieckerman, Mark Gessner

All people who gave access to databases and measured data!

References MCDA in environmental management

- Langhans, Lienert, Schuwirth, Reichert (2013): How to make river assessments comparable: A demonstration for hydromorphology, *Ecological Indicators* 32, 264-275.
- Reichert, Borsuk, Hostmann, Schweizer, Spörri, Tockner, Truffer (2007): Concepts of decision support for river rehabilitation, *Environmental Modelling & Software* 22, 188-201.
- Reichert, Schuwirth, Langhans (2013): Constructing, evaluating and visualizing value and utility functions for decision support, *Environmental Modelling & Software* 46, 283-291. [see also R-package "utility".]
- Reichert, Schuwirth, Langhans (2011): MCWM Ein Konzept für multikriterielle Entscheidungsunterstützung im Wassermanagement. *Wasser Energie Luft*, 103 (2), 139-148.
- Scholten, Reichert, Schuwirth, Lienert (in prep): Tackling uncertainty in multi-criteria decision analysis Applied to water supply infrastructure planning.
- Schuwirth, Reichert, Lienert (2012): Methodological aspects of multi-criteria decision analysis for policy support: A case study on pharmaceutical removal from hospital wastewater. *European Journal of Operational Research* 220, 472-483.
- Schuwirth, Stamm, Reichert (2012): Incorporation of uncertainty in decision support to improve water quality. In: Seppelt, Voinov, Lange, Bankamp (Eds.): International Environmental Modelling and Software Society (iEMSs), 6th Biennial Meeting, Leipzig, Germany, 1005-1012.

Conceptual framework - project iWaQa

"Integrated management of river water quality"

F Value functions based on assessment programs

AWEL Amt für Abfall, Wasser, Energie und Luft, Kanton Zürich, Statusbericht 2006: Wasserqualität der Seen,

Fliessgewässer und des Grundwasser im Kanton Zürich.

LAWA: Übersicht über Qualitätsanforderungen der EG, der internationalen Flussgebietsgemeinschaften und der LAWA; www.umweltbundesamt.de/wasser/themen/ow_s2_2.htm

F Value function for lowest level sub-objectives

Translation of existing assessment procedure into measurable value functions

Quality class	
very good	C < ½ Z
good	$\frac{1}{2} Z \leq C < Z$
moderate	Z ≤ C < 1.5 Z
poor	1.5 Z ≤ C < 2 Z
bad	C ≥ 2 Z

www.modulstufenkonzept.ch

Z: legal quality standard, C: concentration

advantage: improvement within a class is visible, avoids rounding error **assumptions**: all class transitions are equally valuable, piece-wise linear interpolation

Langhans et al. 2013 Ecological Indicators, Langhans & Reichert 2011 Wasser Energie Luft

G Visualization of results

Propagating uncertainty to overall value

Compare alternatives, stakeholders, scenarios - identification of potential consensus solutions

ERIMO: Ecological River Model based on functional groups

N. Schuwirth et al. / Ecological Modelling 222 (2011) 91-104

Schuwirth, Kühni, Schweizer, Uehlinger, Reichert 2008 Freshwater Biology Schuwirth, Acuña, Reichert, 2011 Ecological Modelling

ERIMO: Ecological River Model based on functional groups

- good representation of functional aspects
- short term dynamics: seasonal effects, disturbance, ecosystem resilience

- functional groups not (that) sensitive to water quality
- omnivory can not be implemented
- structural aspects hidden
- \rightarrow taxonomic resolution needed

Model formulation

Differential equations for the biomasses of all taxa and of organic matter per river length $\mathbf{B} = (B_1, \dots, B_n)$ [gDM/m]

stoichiometric coefficients $\mathbf{v} = \{v_{ij}\}$

process rates $r = (r_1, ..., r_m)$ [gDM/m²/a], which depend on parameters θ

$$\frac{d\boldsymbol{B}}{dt} = \boldsymbol{v} \ \boldsymbol{r}\left(\frac{\boldsymbol{B}}{w},\boldsymbol{\theta}\right) \ w$$

R-package "stoichcalc" Reichert & Schuwirth 2010, Environmental Modelling and Software

Metabolic Theory of Ecology

T-corrected maximal rates of whole organism biomass production

FIG. 2. Mass dependence (mass measured in grams) of temperature-corrected maximal rates of whole-organism biomass production ($Pe^{E/kT}$, measured in grams per individual per year) for a wide variety of organisms, from unicellular eukaryotes to plants and mammals (from Ernest et al. 2003). Data, which span >20 orders of magnitude in body size, have been temperature corrected using Eq. 6. The allometric exponent, indicated by the slope, is close to the predicted value of $\frac{34}{95\%}$ CI, 0.75–0.76).

from Brown et al 2004: Ecology, 85(7), 2004, pp. 1771–1789

Growth, respiration and death rates

$$r_{\text{gro on } j} = f_{\text{gro } i} \cdot f_{\text{gro } i} \cdot f_{\text{lim food}} \cdot f_{\text{pref } j} \cdot f_{\text{self inh}} \cdot f_{\text{basal } i} \cdot r_{\text{basal metab}}$$

 $r_{\text{resp }i} = f_{\text{resp}} \cdot f_{\text{basal }i} \cdot r_{\text{basal metab}}$

$$r_{\text{mort }i} = f_{\text{mort}} \cdot f_{\text{basal }i} \cdot r_{\text{basal metab}} \cdot f_{\text{org contam}} \cdot f_{\text{saproby}}$$

 $f_{org\ contam}$ factor dependent on pesticide pollution and sensitivity of the taxon $f_{saproby}$ factor dependent on organic matter pollution and classification of
the taxon in the saprobic system

 $f_{selfinh}$ factor depending on temperature regime, current regime, substrate

$$r_{\text{gro on } j}^{\text{cons}} = f_{\text{gro } i} f_{\text{gro } i} f_{\text{lim food}} f_{\text{pref } j} f_{\text{self inh}} f_{\text{basal} i} r_{\text{basal metab}}$$

fit from large datasets

basal metabolic rate

taxon specific parameters, prior mean = 1

account for variation of individual taxa around MTE predictions

$$r_{\text{gro on } j}^{\text{cons}} = f_{\text{gro } i} f_{\text{gro } i} f_{\text{lim food}} f_{\text{pref } j} f_{\text{self inh}} f_{\text{basal} i} r_{\text{basal metab}}$$

food limitation

$$f_{\text{lim food}} = \frac{D_{\text{food}}^{q}}{K_{\text{food}}^{q} + D_{\text{food}}^{q}}$$

One process for each food source *j*

 D_{food} biomass density of the sum of all food sources

 K_{food} halfsaturation density, at which growth rate is reduced to 50% of the max

$$r_{\text{gro on } j}^{\text{cons}} = f_{\text{gro } i} f_{\text{gro } i} f_{\text{lim food}} f_{\text{pref } j} f_{\text{self inh}} f_{\text{basal} i} r_{\text{basal metab}}$$

food preference factor

$$f_{\text{pref } j} = \frac{D_j p_j}{\sum_f D_f p_f}$$

One process for each food source j D_j biomass density of food source j p_j preference factor for food source j

$$r_{\text{gro on } j}^{\text{cons}} = f_{\text{gro}} f_{\text{gro } i} f_{\text{lim food}} f_{\text{pref } j} f_{\text{self inh}} f_{\text{basal } i} r_{\text{basal metab}}$$

self inhibition

Two alternative formulations (Monod and Blackman)

$$f_{\text{self inh Monod}} = \frac{K_{dens}}{K_{dens} + D}$$

$$f_{\text{self inh Blackman}} = \begin{cases} 1 - \frac{D}{2K_{dens}} & \text{for } D < 2K_{dens} \\ 0 & \text{for } D \neq 2K_{dens} \end{cases}$$

D biomass density of the taxon

 K_{dens} half-inhibition density where growth rate is reduced to 50% of the max

$$K_{\rm dens} = h_{\rm dens} \cdot f_{\rm current} \cdot f_{\rm temp} \cdot f_{\rm substrate}$$

depends on habitat conditions and specific preferences of the taxon

Glatt-Greifensee: 36 sites

AWEL Amt für Abfall, Wasser, Energie und Luft: Zürcher Gewässer 2012, Entwicklung – Zustand - Ausblicke